В каком году узи появилось в россии

Содержание

История ультразвукового исследования

В каком году узи появилось в россии

Известно, что для животных, активная жизнедеятельность которых в основном ведется ночью, характерны большие глаза и острое зрение, но летучие мыши, напротив, имеют маленькие глаза и очень большие уши.

Это натолкнуло итальянского ученого Ballanzani еще 200 лет тому назад на мысль о проведении исследования по изучению возможностей ориентации летучих мышей в пространстве. Он протянул через комнату тонкие нити, снабженные колокольчиками, затемнил помещение и впустил туда летучих мышей.

Несмотря на полнейшую темноту, ни одна летучая мышь не натолкнулась на протянутые нити. Когда же мышам залепили уши, то они стали задевать натянутые нити и даже наталкиваться на стены. Исследования Ballanzani заложили первый камень в понимание процесса ориентации летучих мышей в пространстве.

Ballanzani установил, что эти животные ориентируются в пространстве посредством ультразвуковых волн.

В промышленности ультразвук на протяжении многих лет применяется, в частности, при определении косяков рыб в морях и океанах.

Благодаря открытию в 1880 году братьями J. и Р. Curie так называемого пьезоэлектрического эффекта были впервые генерированы ультразвуковые волны. Первые опыты по применению ультразвуковых колебаний были предприняты von Sternbert, который, использовав после катастрофы «Титаника» в 1912 году ультразвуковой зонд, открыл путь для дальнейшего широкого применения эхолокации.

Благодаря французскому физику R. Langevin эхолокация получила дальнейшее развитие во время Первой мировой войны — она стала использоваться для обнаружения подводных лодок.

В технической области ультразвук давно применяется для индикации и локализации места повреждения среды.

Ультразвуковое исследование в медицине

В медицине ультразвуковая диагностика впервые нашла применение в области неврологии благодаря исследованиям невропатолога K.Th. Dussig. Вдвоем со своим братом, радиотехником, в период с 1938 по 1942 годах они предприняли первые попытки для получения представления о патологических внутричерепных изменениях.

Однако эти попытки не привели тогда к прорыву ультразвуковых технологий в медицину, пауза в развитии диагностического ультразвука затянулась. А в 1954 году после создания J.G. Holmes нового поколения ультразвуковых приборов с водяной подушкой начался новый отсчет времени в развитии медицинской ультразвуковой диагностики. Работы кардиологов J.

Edler и. С.Н. Hertz заставили специалистов прислушаться к результатам ультразвукового исследования сердца и привели к созданию эхокардиографии. Последующее развитие учения об ультразвуке привело к тому, что J. Donald и Т.Е. Braun изобрели сканер с датчиком, работающим без водяной подушки.

Благодаря данному изобретению появилась возможность исследовать полости тела, сердца и щитовидную железу в двухмерном пространстве. Дальнейшее тесное сотрудничество между медиками и медицинскими техниками способствовало форсированию технического усовершенствования диагностической аппаратуры.

Сегодня возможно не только выполнение тонкоигольной прицельной биопсии под контролем ультразвука, но и интраоперационное применение ультразвука.

Ультразвуковое исследование при патологиях опорно-двигательного аппарата

Воодушевленные публикациями и непосредственными беседами с Kramps и Lenschow, Р. Граф с коллегами начали с 1978 года систематически пытаться применить ультразвук в диагностике патологий опорно-двигательного аппарата.

Ходившие у потреблении в те времена сканеры УЗИ были технически просты, в связи с чем, естественно, имели ограниченные возможности.

Если изображение мышц и связок достигалось относительно легко, то применительно к костям использование эхолокации вследствие тотального отражения ультразвука от кортикального слоя казалось практически безуспешным.

Только после внедрения первого высокоразрешающего Compound-сканера с 5 и 7,5 МГц датчиками (в тот период времени они были скорее исключением, чем правилом) удалось впервые получить изображение мениска in vivo. На основании этих результатов ультрасонография начала внедряться в практику и для исследования тазобедренных суставов новорожденных.

Полученные данные были очень неинформативными, поскольку смену зон эхогенности и анэхогенности невозможно было соотнести со знаниями того времени об ультразвуковой анатомии тазобедренного сустава новорожденного.

Однако профессиональный интерес вынудил препарировать суставы на трупах и снабжать отдельные анатомические структуры отражающими материалами для полной их идентификации при сонографическом исследовании.

Благодаря постоянному сравнению трупных препаратов, рентгенограмм, артрограмм, плоскостных срезов на трупных тазобедренных суставах, диафаноскопии с сонограммами удалось гораздо лучше идентифицировать анатомические структуры в сонографическом изображении.

Сравнительные серии сонограмм тазобедренных суставов с наличием вывиха и без вывиха бедра показывали разнообразную эхоструктуру и вместе с тем постоянную ультразвуковую модель сустава. Отталкиваясь в тот период времени от рентгенологической оценки тазобедренного сустава, исследователи пытались и по данным сонографии судить о положении головки бедра.

С помощью подобного подхода к результатам УЗИ удалось по крайней мере установить различия между «вывихом» и «отсутствием вывиха». Своеобразной вехой в ультразвуковой диагностике вывихов в тазобедренном суставе следует считать период, когда «одалживание» друг у друга ультразвукового аппарата, оплата материалов за счет собственных средств и выполнение исследования, относимого к разряду «хобби», сменились на официальную программу австрийского фонда, направленную на научное решение этой проблемы.

Источник: http://NewVrach.ru/istoriya-ultrazvukovogo-issledovaniya.html

История ультразвуковой диагностики (УЗИ)

В каком году узи появилось в россии

Технология, используемая в медицинском ультразвуковом исследовании, постоянно развивается и в настоящее время способствует важным улучшениям в диагностике и лечении пациентов.

Наука и технологии, используемые при ультразвуковой диагностике (УЗИ), имеют долгую и интересную историю.

Давайте посмотрим на историю ультразвука и узнаем, как использование звуковых волн в качестве диагностического инструмента попало в клиники и больницы по всему миру.

Изобретение ультразвука

Кто изобрел ультразвук? Итальянский биолог Лаззаро Спалланцани чаще всего считается человеком, который открыл ультразвук.

Лаззаро Спалланцани (1729-1799) был физиологом, профессором и священником, который провел многочисленные эксперименты, приведшие к глубокому пониманию биологии человека и животных.

В 1794 году Спалланцани провел исследования на летучих мышах и пришел к выводу, что они могут ориентироваться, используя звук, а не зрение.

Это явление теперь известно как эхолокация, когда местоположения определяется или идентифицируется с помощью звуковых волн, отражаемых или отражающихся от объектов в окружающей среде.

По тем же самым принципами современная медицинская ультразвуковая технология функционирует сегодня.

Лаззаро Спалланцани – первооткрыватель ультразвука.

Ультразвук характеризуется как звуковые волны с частотой выше, чем то, что слышно человеческим ухом.

Что такое эхолокация?

Мы можем найти несколько дополнительных примеров эхолокации в природе. Эхолокационные импульсы – это короткие звуковые импульсы с частотами от около 1000 герц у птиц до более 200 000 герц у китов.

Ранние эксперименты с УЗИ

Джеральд Нойвайлер в своей книге «Биология летучих мышей» описывает, как Спалланцани привел сов и филинов в свою лабораторию и заметил, что они не будут летать по комнате, если не будет источника света.

«Когда он повторил тот же эксперимент с использованием летучих мышей, эти маленькие млекопитающие уверенно облетали кабинет ученого, даже в полной темноте, избегая проводов, которые Спалланцани специально свесил с потолка», – писал Нойвайлер.

Нойвайлер добавляет, что итальянский ученый даже ослепил летучих мышей, и все же они смогли избежать проводов. Спалланцани знал это, потому что колокольчики были прикреплены к концам проводов.

Физиолог понял, что летучие мыши используют навигацию на основе звука, потому что, когда он помещал закрытые латунные трубки в уши млекопитающих, они не могли правильно перемещаться по комнате и влетали в провода.

Хотя он не знал, что летучие мыши испускали свой собственный звук для ориентации, звук, который он или любой другой человек не мог слышать. Спалланцани смог заключить, что существа используют свои уши для навигации по окружающей среде.

Польза ультразвука для медицины

Со временем другие продолжали опираться на работу Спалланцани.

В 1942 году австрийский невролог Карл Дуссик стал первым, кто использовал ультразвуковые волны в качестве диагностического инструмента.

Он пропустил ультразвуковой луч через человеческий череп в попытках обнаружить опухоли головного мозга. Уже тогда стало ясно, что эта инновационная на то время технология имеет огромные возможности.

Ультразвуковая технология и ее применение в здравоохранении продолжают развиваться. Совершенствование инструментов и совершенствование процедур происходят каждый день. Совсем недавно портативные сканеры меньшего размера стали более распространенными и помогли еще больше интегрировать использование ультразвука в большее количество областей и этапов лечения пациентов.

Больше о качественном ультразвуком оборудовании можно узнать на сайте https://rh.ua/ и также приобрести оное можно по адресу https://rh.ua/ru/uzi-apparati/

Краткая хронология развития ультразвуковой диагностики

  • 1794 Физиолог Лаззаро Спалланцани был первым, кто открыл эхолокацию среди летучих мышей, которая сегодня составляет основу физики ультразвука.
  • 1877 Братья Пьер и Жак Керри открывают пьезоэлектричество. Ультразвуковые преобразователи (зонды) излучают и принимают звуковые волны посредством пьезоэлектрического эффекта.
  • 1915 Вдохновленному потоплением Титаника, физику Полу Ланжевену было поручено изобрести устройство для обнаружения объектов на дне моря. Ланжевин изобрел гидрофон – то, что Всемирный конгресс ультразвука в медицинском образовании называет «первым датчиком».
  • 1942 Невролог Карл Дуссик считается первым, кто использовал УЗИ для медицинских диагнозов. Он пропустил ультразвуковой луч через человеческий череп в попытке обнаружить опухоль головного мозга у своего пациента.
  • 1948 Джордж Д. Людвиг, доктор медицинских наук, разработал ультразвуковое оборудование для обнаружения желчных камней.
  • 1949-1951 гг. Дуглас Хоури и Джозеф Холмс из Университета Колорадо были одними из ведущих пионеров ультразвукового оборудования в B-режиме, включая 2D-сканер линейного соединения в B-режиме. Джон Рид и Джон Уайлд изобрели портативное устройство B-mode для обнаружения опухолей молочной железы.
  • 1953 Врач Инге Эдлер и инженер К. Хельмут Герц выполнили первую успешную эхокардиограмму, используя устройство контроля эхокардиографических испытаний.
  • 1958 Доктор Ян Дональд включил ультразвук в область акушерства и гинекологии.
  • 1966 Дон Бейкер, Деннис Уоткинс и Джон Рид разработали технологию ультразвукового импульсного допплера; их развитие привело к визуализации кровотока в различных слоях сердца.
  • 1970-е годы – появилось много разработок, включая непрерывный волновой допплер, спектральный волновой допплер и ультразвуковой цветной допплеровский прибор.
  • 1980-е годы Казунори Баба из Токийского университета разработал ультразвуковую технологию 3D и в 1986 году сделал трехмерное изображения плода.
  • 1990-е. Начиная с 1980-х годов, ультразвуковые технологии стали более совершенными с улучшенным качеством изображения и возможностями 3D-визуализации. Эти улучшения продолжались в 1990-х годах с принятием возможностей 4D (в реальном времени). Биопсия под ультразвуковым контролем (эндоскопическое ультразвуковое исследование) также началась в 1990-х годах.
  • 2000-е – настоящее время. Ультразвуковые технологии непрерывно развиваются и становятся все более удобными. В последние годы на рынке появилось множество компактных портативных устройств. В частности НАСА разработало специальную программу для проведения ультразвуковых исследований в космосе.

При написании статьи старался сделать ее максимально интересной, полезной и качественной. Буду благодарен за любую обратную связь и конструктивную критику в виде комментариев к статье. Также Ваше пожелание/вопрос/предложение можете написать на мою почту pavelchaika1983@gmail.com или в Фейсбук, с уважением автор.

Источник: https://www.poznavayka.org/anatomiya-i-meditsina/istoriya-ultrazvukovoy-diagnostiki-uzi/

Профессия врач УЗИ

В каком году узи появилось в россии

Врач УЗИ (узист) – это специалист, проводящий неинвазивное исследование внутренних органов и тканей человека с помощью ультразвука.

Основным направлением, которым занимается врач УЗИ является акушерство и гинекология: скрининговое обследование женщин, планирующих беременность и триместровый контроль за их состоянием в случае наступления зачатия. На УЗИ определяют пол ребенка, срок зачатия, контролируют развитие плода, определяют его предлежание перед родами, многоплодную беременность.

Также УЗИ широко применяется в онкологии и гастроэнтерологии для определения точной локализации опухоли, стадии ее развития, метастазирования.

Врач ультразвуковой диагностики обследует и сосудистое русло с помощью методик допплерографии, на специальном аппарате. Он контролирует проведение многих малоинвазивных диагностических процедур, требующих уникальной точности: коронарокардиография, стентирование, урография, колоноскопия, ЭКО.

https://www.youtube.com/watch?v=gOWoIN4EQYs

Кроме того, узист исследует паренхиматозные органы: сердце, печень, почки, поджелудочную железу, молочные железы. УЗИ еще называют сонографией или визуализацией мягких тканей, которые невозможно «рассмотреть» на рентгеновских снимках.

Несмотря на то, что врач УЗИ не лечит пациентов, от его обследования иногда зависит их жизнь. Например, специалист диагностирует:

  • Внематочную беременность (разрыв маточной трубы с перитонитом).
  • Гибель одного из плодов при многоплодной беременности (интоксикация).
  • Многоводие или, напротив, маловодие (для составления плана родоразрешения).
  • Преждевременную отслойка плаценты (внутриутробная гибель плода).
  • Расположение контрацептивов внутри матки при наступившей беременности (нарушение целостности плодного яйца).

Также узист определяет:

  • Сроки наложения кругового шва при истмико-цервикальной недостаточности. Это позволит исключить сепсис или кровотечение.
  • Показания к кесареву сечению.

Профессия врача УЗИ популярна и востребована, без узиста не возможна современная неонатология, гинекология, неотложная медицина (кровотечения, тромбозы) и частично хирургия.

Места работы

Врач УЗИ работает во многих медицинских организациях, в профсмотровых поликлиниках, перинатальных центрах, родильных домах, диспансерах, на скорой помощи, в санавиации, санаториях, профилакториях, диагностических центрах, НИИ.

История профессии

История УЗИ тесно связана с двумя важнейшими открытиями:

  • Ультразвука – Л. Спалланцани (XVIII век).
  • Пьезоэлектрического эффекта – основой детекторов УЗИ аппаратуры, П. Кюри (1880 год).

На основе этих знаний в 1941 году К. Дюссик провел первое ультразвуковое исследование мозга. Эта дата считается днем рождения медицинского УЗИ. Через 8 лет исследовали толщину кишечных стенок (Д.

Уайлд), еще через 9 лет – измерили головку плода. Однако настоящий современный аппарат УЗИ появился в США в 1963 году.

В РФ УЗИ-исследования стали входить в медицинскую практику с конца восьмидесятых годов прошлого столетия.

Первые УЗИ-аппараты давали 1D изображение, то есть не снимок не самого органа, а график его работы в А-режиме. Датчик напоминал карандаш с пьезоэлектрическим элементом на кончике.

По разной степени отражения ультразвука от ткани органа судили о его патологии. В семидесятые изобрели дополнительное устройство – шарнир для поворота датчика. Теперь изображение стало двухмерным (2D) и давало возможность увидеть орган.

На этом принципе работают большинство современных УЗИ аппаратов.

На рубеже веков научились работать не только в одной плоскости, но и в перпендикулярной к ней. Так появилось 3D измерение и объемное УЗИ. А с появлением двухмерных фазированных датчиков родилось 4D изображение, дающее полную визуализацию органа.

Сегодня разрешение снимков менее миллиметра, а скорость съемки практически мгновенна. Но нет предела совершенству. На повестке дня создание УЗ-томографии, то есть послойного исследования тканей ультразвуком.

И, кроме того, освоение методики направленного УЗ для уничтожения опухолей. За этим – будущее УЗИ.

При проведении УЗИ большую роль играет опытность специалиста.

Обязанности врача УЗИ

Основные обязанности врача УЗИ следующие:

  • Обследование больных (амбулаторно, стационарно, на выезде).
  • Курация беременных женщин на всех этапах вынашивания пода, контроль за внутриутробным состоянием младенца.
  • Контроль за исправностью аппаратуры и комплектующих к ней, организация технических осмотров.
  • Выдача заключений по качеству проведенных исследований по запросу компетентных органов и страховых компаний.
  • Участие во врачебных конференциях, посвященных разбору ятрогенных случаев.
  • Диспансеризация и профилактические осмотры.
  • Ведение медицинской документации.

Требования к врачу УЗИ

Базовые требования к врачу УЗИ включают в себя:

  • Высшее медицинское образование, действующий аккредитационный лист по ультразвуковой диагностике.
  • Умение проводить УЗДГ и ЭХО КГ. Опыт расшифровки.
  • Владение навыками диагностики неотложных состояний.
  • Умение работать в единой информационной системе клиники.

УЗИ позволяет точно определить локализацию опухоли, стадии ее развития и метастазирования.

Как стать врачом УЗИ

Чтобы стать врачом УЗИ, необходимо:

  1. Окончить вуз или медицинское училище по специальности «Лечебное дело» или «Педиатрия».
  2. Получить аккредитационный лист. Для этого нужно сдать экзамен и успешно пройти собеседование с экспертной комиссией.
  3. После этого можно амбулаторно работать с пациентами (например, терапевтом или педиатром).
  4. Для получения узкой специализации можно поступить в ординатуру (2 года учебы) по специальности «Ультразвуковая диагностика». Платно проще, т.к. конкурс небольшой и для поступления нужно иметь только 50 аттестационных баллов. Бесплатно попасть в ординатуру можно двумя путями: по конкурсу на общих основаниях или по целевому направлению главного врача медицинской организации, в которой специалист уже работает.

Каждый год врачи обязаны набрать 50 аттестационных баллов.

Для этого можно проходить курсы повышения квалификации (36 баллов), посещать научно-практические конференции (количество баллов зависит от мероприятия, но обычно около 10 баллов), публиковать научные работы, писать книги, защищать диссертации.

Если баллов набрано достаточно, то можно работать дальше. Если баллы не набраны, то придется либо прекращать медицинскую практику, либо решать эту проблему «нестандартными» способами.

Подробнее об аккредитации и отмене интернатуры.

Опыт, мастерство и качество работы врача, как правило, оценивается квалификационными категориями, которые можно получить, защитив исследовательскую работу. Во время защиты комиссия оценивает навыки врача в области диагностики, лечения, профилактики, а также актуальность его знаний.

Какие есть квалификационные категории:

  • вторая – свыше 3 лет стажа;
  • первая – более 7 лет стажа;
  • высшая – более 10 лет стажа.

Квалификационная категория позволяет занимать высокие должности в медучреждениях, дает право на надбавку к зарплате, дает статус в профессиональной среде и высокое доверие со стороны пациентов. Еще большего уважения можно добиться, выступая на конференциях, симпозиумах и создавая научные статьи и работы.

Врач имеет право не квалифицироваться, но это затруднит его карьерный и профессиональный рост.

Зарплата врача УЗИ

Общий диапазон доходов таков: врачи УЗИ зарабатывают от 35 000 до 120 000 рублей в месяц. Больше всего вакансий открыто в Московской и Ленинградской областях. Минимальную зарплату мы нашли в Евпатории – 35 000 рублей в месяц; максимальную – в медцентре Москвы – от 120 000 рублей ежемесячно.

Средняя зарплата врача УЗИ – 61 000 в месяц.

Помимо высшего образования на рынке есть ряд краткосрочного обучения длительностью, как правило, от недели до года.

Медицинский университет инноваций и развития приглашает вас пройти дистанционные курсы переподготовки или повышения квалификации по направлению «Ультразвуковая диагностика» с получением диплома или сертификата государственного образца. Обучение длится от 16 до 2700 часов, в зависимости от программы и вашего уровня подготовки.

Источник: https://enjoy-job.ru/professions/uzist/

Ультразвук: шаг в медицину

В каком году узи появилось в россии

Сегодня сложно представить медицинскую диагностику без такого метода, как ультразвуковое исследование. Появившись в середине прошлого века, УЗИ-сканеры произвели настоящую революцию в медицине. Ультразвуковая диагностика продолжает активно развиваться.

На смену обычной двухмерной картинке приходят новые технологии. Недавно первый отечественный УЗИ-сканер экспертного класса производства «Калугаприбор» концерна «Автоматика» представил холдинг «Швабе», отвечающий за маркетинговую стратегию и продажи этого оборудования.

О том, что такое ультразвук, как появились УЗИ-сканеры и о новейшей технологии 5D в ультразвуковом исследовании – в нашем материале.

На ультразвуковой волне

Многие помнят определение звука из школьного учебника по физике: «Звуковыми волнами или просто звуком принято называть волны, воспринимаемые человеческим ухом». Таким образом, диапазон звуковых волн лежит в пределах от 20 Гц до 20 кГц. Звуки именно такой частоты способен слышать человек. Волны с частотой менее 20 Гц называются инфразвуком, а с частотой выше 20 кГц – ультразвуком.

В то время как человеку инфразвук и ультразвук недоступны, многие живые существа вполне нормально общаются в этих частотах.

Например, слон различает звук частотой от 1 Гц, а в верхнем пределе слышимости лидируют дельфины – максимум слухового восприятия у них доходит до 150 кГц. Кстати, ультразвук вполне способны уловить собаки и кошки.

Собака может слышать звук до 70 кГц, а верхний порог звукового диапазона у кошек равен 30 Гц.

Если для некоторых животных ультразвук – обычный способ общения, то людям о наличии в природе «невидимых» звуковых волн лишь приходилось догадываться. Опыты в этой сфере проводил еще Леонардо да Винчи в XV веке. Но открыл ультразвук в 1794 году итальянец Ладзаро Спалланцани, доказав, что летучая мышь с заткнутыми ушами перестает ориентироваться в пространстве.

УЗИ: физические основы

В XIX веке ультразвук произвел настоящий бум в научной среде, стали проводиться первые научные опыты. Например, в 1822 году, погрузив в Женевское озеро подводный колокол, удалось вычислить скорость звука в воде, что предопределило рождение гидроакустики.

Ближе к концу века, в 1890 году, учеными Пьером и Жаком Кюри было открыто физическое явление, которое вошло в основу ультразвукового исследования. Братья Кюри обнаружили пьезоэлектрический эффект. Заключается он в том, что при механической деформации некоторых кристаллов между их поверхностями возникает электрическое напряжение.

Пьер Кюри и кварцевый пьезоэлектрометр

На основе таких пьезокерамических материалов и создается главный компонент любого УЗИ-оборудования – преобразователь, или датчик, ультразвука.

На пьезоэлементы подается ток, который преобразуется в механические колебания с излучением ультразвуковых волн.

Пучок ультразвуковых волн распространяется в тканях организма, часть его отражается и возвращается обратно к пьезоэлементу. Основываясь на времени прохождения волны, оценивается расстояние.

Ультразвук в медицине: от лечения артрита до диагностики

В медицине ультразвук вначале использовали как метод лечения артритов, язвенной болезни желудка, астмы. Было это в начале 30-х годов прошлого века.

Считалось, что ультразвук обладает противовоспалительным, анальгезирующим, спазмолитическим действием, также усиливает проницаемость кожи.

Кстати, сегодня на этом основан фонофорез – метод физиотерапии, когда вместо обычного геля для УЗИ наносится лечебное вещество, а ультразвук помогает препарату глубже проникать в ткани.

Но свое основное применение в области медицины ультразвук нашел как метод диагностики. Основателем УЗИ-диагностики считается австрийский невролог, психиатр Дьюссик. В 1947 году он рассмотрел опухоль мозга, учитывая интенсивность, с которой ультразвуковая волна проходила сквозь череп пациента.

Настоящий прорыв в развитии ультразвуковой диагностики произошел в 1949 году, когда в США был создан первый аппарат для медицинского сканирования. Это устройство мало чем напоминало современные УЗИ-сканеры.

Оно представляло собой резервуар с жидкостью, в которую помещался пациент, вынужденный долгое время сидеть неподвижно, пока вокруг него передвигался сканер брюшной полости – сомаскоп. Но начало было положено.

УЗИ-сканеры совершенствовались очень стремительно, и к середине 60-х годов они стали приобретать привычный вид с мануальными датчиками.

Благодаря развитию микропроцессорной технологии в течение 1980-1990-х годов качество УЗИ намного улучшилось.

В это время ультразвуковую диагностику стали активно применять в различных областях медицины, оценив ее безвредность по сравнению с рентгеновскими лучами и простотой использования в сравнении с магнитно-резонансной томографией.

Особо широкое применение ультразвук нашел в акушерстве и гинекологии. Уже в конце 1990-х годов во многих странах УЗИ стало стандартным исследованием, с помощью которого определяли срок беременности, выявляли пороки развития плода.

Взгляд изнутри: современные технологии в УЗИ

Сегодня отечественное здравоохранение закупает у зарубежных поставщиков порядка 3 тысяч УЗИ-сканеров в год. Дело в том, что до последнего времени такие устройства не выпускались серийно в России.

Эксперименты по применению ультразвука проводились и у нас в стране. В 1954 году в институте акустики Академии наук СССР даже появилось специализированное отделение, а в 1960-е годы был налажен выпуск отечественных УЗИ-сканеров. Но все они так и остались в статусе экспериментальных, не получили массового применения на практике, а к 1990-м годам и вовсе были замещены импортными аналогами.

В прошлом году Ростех в рамках программы импортозамещения наладил серийное производство российских УЗИ-сканеров – «РуСкан 50» и «РуСкан 60» на мощностях «Калугаприбор», входящего в концерн «Автоматика».

Они относятся к среднему и высокому классу, в них применяются новейшие технологии, такие как 3D/4D-изображение, а также эластография, то есть УЗИ с применением дополнительного фактора – давления, помогающего по характеру сокращения тканей определять патологические изменения.

https://www.youtube.com/watch?v=HKc9Qfacba8

Методы ультразвуковой диагностики продолжают активно развиваться. В этом году к производственной линейке Ростех добавил аппараты экспертного класса. Госкорпорация представила новинку на форуме БИОТЕХМЕД – «РуСкан 65М» в рамках экспозиции холдинга «Швабе», который реализует маркетинговую стратегию и осуществляет продажи изделия. Это первый отечественный УЗИ-сканер экспертного класса.

Что означает определение «экспертный» в классификации УЗИ-сканеров? Основной критерий – это разрешающая способность. Здесь используются высокоплотные датчики, способные различать мельчайшие детали структур.

Как упоминалось выше, каждый преобразователь имеет определенный набор пьезоэлементов. В аппаратах недорогого класса плотность этих элементов невысока.

Чем больше плотность, тем более точной и достоверной будет диагностика.

Второй, не менее важный критерий – какой набор программ заложен в данном оборудовании. Для того чтобы обеспечивать высокий уровень исследования, как правило, применяют очень дорогие пакеты программного обеспечения. Это позволяет визуализировать наиболее тонкие детали, изменения структур органов, сосудов и тканей. Кстати, в «РуСкан 65М» программное обеспечение – российского производства.

В новом изделии не только улучшено качество получаемого изображения, но и внедрены автоматизированные методы его обработки и анализа.

Так, визуальную оценку плода осуществляет программа реконструкции полупрозрачного 3D УЗИ Crystal Vue, которая за счет усиления визуализации одновременно наружных и внутренних структур в одном реконструированном трехмерном изображении позволяет увеличить информативность и диагностическую достоверность исследования за счет повышения контрастности и подсветки внутренних структур дополняет объемное изображение морфологической информацией об объекте исследования, повышая точность диагностики. Среди других технологий новинки – программа автоматического анализа образований молочной железы S-Detect Breast. Еще одна функция изделия – фантастическая 5D Heart Color, которая реконструирует девять проекций сердца плода с одновременным отображением кровотока. Полученные данные позволяют наиболее детально оценить сердце на предмет врожденных патологий.

Таким образом, в течение нескольких десятилетий применение УЗИ в медицине претерпело огромные изменения, особенно в акушерстве: от простого измерения размеров плода до детальной оценки его кровотока и внутренних органов. То, что было технически невозможно еще совсем недавно, сегодня превращается в привычную составляющую рутинного ультразвукового исследования.

Источник: https://rostec.ru/news/ultrazvuk-shag-v-meditsinu/

История развития ультразвуковой диагностики

В каком году узи появилось в россии

Современным пациентам сложно представить, что ещё не так давно медики обходились без такого метода диагностики, как ультразвуковое исследование. Ультразвук произвёл настоящую революцию в медицине, наделив врачей высокоинформативным и безопасным способом обследования пациентов.

Всего за каких-то полвека, которые насчитывает история ультразвуковой медицины, УЗИ стало главным помощником в диагностике большинства заболеваний. Как же появился и развивался этот метод?

Первые исследования ультразвуковых волн

О наличии в природе звуковых волн, не воспринимаемых человеком, люди догадывались давно, но открыл «невидимые лучи» итальянец Л. Спалланцани в 1794 г., доказав, что летучая мышь с заткнутыми ушами перестаёт ориентироваться в пространстве.

Первые научные опыты с ультразвуком стали проводиться еще в XIX в. Швейцарскому учёному Д. Колладену в 1822 г. удалось вычислить скорость звука в воде, погружая в Женевское озеро подводный колокол, и это событие предопределило рождение гидроакустики.

В 1880 году братья Кюри обнаружили пьезоэлектрический эффект, возникающий в кварцевом кристалле при механическом воздействии, а спустя 2 года был сгенерирован и обратный пьезоэффект. Это открытие легло в основу создания из пьезоэлементов преобразователя ультразвука – главного компонента любого УЗ-оборудования.

XX век: гидроакустика и металлодетекция

Начало XX века ознаменовалось развитием гидролокации – обнаружения объектов под водой при помощи эха. Созданием первых эхолотов мы обязаны сразу нескольким учёным из разных стран: австрийцу Э.

Бэму, англичанину Л. Ричардсону, американцу Р. Фессендену.

Благодаря гидролокаторам, сканировавшим морские глубины, стало возможным находить подводные препятствия, затонувшие корабли, а в годы I мировой войны – вражеские субмарины.

Еще одним ультразвуковым направлением стало создание в начале 30-х годов дефектоскопов для поиска изъянов в металлических конструкциях. Своё место УЗ-металлодетекция нашла в промышленности. Одним из основателей данного метода стал российский учёный С.Я. Соколов.

Методы эхолокации и металлодетекции заложили фундамент для первых экспериментов с живыми организмами, которые и проводились приборами промышленного назначения.

Ультразвук: шаг в медицину

Попытки поставить ультразвук на службу медицине относятся к 30-м годам XX века. Его свойства начали применять в физиотерапии артритов, экземы и ряда других заболеваний.

Опыты, начавшиеся в 40-е годы, были направлены уже на использование УЗ-волн в качестве инструмента диагностики новообразований. Успехов в исследованиях достиг венский психоневролог К.

Дюссик, который в 1947 году представил метод, названный гиперсонографией. Доктору Дюссику удалось обнаружить опухоль мозга, замеряя интенсивность, с которой ультразвуковая волна проходила сквозь череп пациента.

Именно этот учёный считается одним из родоначальников современной УЗ-диагностики.

Настоящий прорыв в развитии УЗД произошел в 1949 году, когда учёный из США Д. Хаури сконструировал первый аппарат для медицинского сканирования.

Это и последующие творения Хаури мало напоминали современные приборы.

Они представляли собой резервуар с жидкостью, в которую помещался пациент, вынужденный долгое время сидеть неподвижно, пока вокруг него передвигался сканер брюшной полости – сомаскоп.

Примерно в это же время американский хирург Дж. Уайлд создал портативный прибор с подвижным сканером, который выдавал в режиме реального времени визуальное изображение новообразований. Свой метод он назвал эхографией.

В последующие годы УЗИ-сканеры совершенствовались, и к середине 60-х годов они стали приобретать вид, близкий к современному оборудованию с мануальными датчиками. Тогда же западные врачи начали получать лицензии для использования в практике метода УЗД.

Узд в советской медицине

Эксперименты по применению ультразвука проводились и советскими учеными. В 1954 году в институте акустики Академии Наук СССР появилось специализированное отделение, возглавляемое профессором Л. Розенбергом.

Выпуск отечественных УЗИ-сканеров был налажен в 60-е годы в НИИ инструментов и оборудования. Учёные создали ряд моделей, предназначенных для применения в различных медицинских сферах: кардиологии, неврологии, офтальмологии. Но все они так и остались в статусе экспериментальных и не получили «места под солнцем» в практической медицине.

К тому моменту, когда советские врачи начали проявлять интерес к ультразвуковой диагностике, им уже приходилось пользоваться плодами достижений западной науки, поскольку к 90-м годам прошлого века отечественные разработки безнадёжно устарели и отстали от времени.

Современные технологии в УЗИ

Методы ультразвуковой диагностики продолжают активно развиваться. На смену обычной двухмерной визуализации приходят новые технологии, позволяющие получать объёмную картинку, «путешествовать» внутри полостей тела, воссоздавать внешний вид плода. Например:

  1. Трёхмерное УЗИ – создаёт 3D изображение в любом ракурсе.
  2. Эхоконтрастирование – УЗИ с применением внутривенного контраста, содержащего микроскопические газовые пузырьки. Отличается повышенной точностью диагностики.
  3. Тканевая, или 2-я гармоника (THI) – технология с улучшенным качеством и контрастностью изображения, показана пациентам с избыточным весом.
  4. Соноэластография – УЗИ с применением дополнительного фактора – давления, помогающего по характеру сокращения тканей определять патологические изменения.
  5. Ультразвуковая томография – методика, аналогичная по информативности КТ и МРТ, но при этом совершенно безвредная. Собирает объёмную информацию с последующей компьютерной обработкой изображения в трёх плоскостях.
  6. 4 D– узи – технология с возможностью навигации внутри сосудов и протоков, так называемый «взгляд изнутри». По качеству изображения похоже на эндоскопическое исследование.

Источник: http://www.rumex.ru/information/Istorija-razvitija-ul%27trazvukovoj-diagnostiki-123

История появления УЗИ в медицине

В каком году узи появилось в россии

УЗИ — ультразвуковое исследование — метод диагностики, который на сегодняшний день является одним из основных инструментов современной медицины и применяется практически во всех её областях.

Будучи довольно молодым методом, УЗИ диагностика совершила настоящий переворот, обеспечив врачей мощным, быстрым, безопасным, информативным и достоверным инструментом обследования пациентов для выявления широкого круга заболеваний.

Но как ультразвук попал в арсенал медиков и что этому предшествовало? Об этом и расскажет этот небольшой обзор.

Открытие ультразвука и пьезоэлектриков

С давних времён учёные-исследователи в области физики, математики, материаловедения, позднее в электронике, пытались проникнуть за грань материального.

Ещё Леонардо да Винчи в XV веке погружал в жидкость трубку, пытаясь определить движение и скорость движущихся навстречу друг другу кораблей.

Так со временем появился ультразвук, которым стали пользоваться во многих сферах, с том числе в медицине, сначала в диагностике, а затем и в лечении.

Что же такое ультразвук? Ультразвук – это упругие колебания с частотами выше диапазона слышимости человека (20 кГц), распространяющиеся в виде волны в газах, жидкостях и твёрдых телах или образующее в ограниченных областях этих сред стоячие волны.

В XIX веке ультразвук произвёл настоящий бум в среде исследователей, объединив усилия учёных различных областей.

Например, швейцарский физик Жан – Даниел и математик Чарльз Штурм, занимаясь проблемами скорости звука в воде, внесли немалый вклад в развитие гидролокатора.

Учёный Калладон в результате своих экспериментов сумел определить скорость звука в воде. Благодаря этому родилась гидроакустика.

В конце XIX века, в 1877 году, Джон Уильям Струтт разработал теорию звука, которая и явилась основой науки об ультразвуке. Тремя годами позже открытие учёных Пьера и Жака Кюри привело к развитию ультразвукового преобразователя. Их открытие пьезоэлектриков стало основой современного ультразвукового оборудования.

В XX веке исследования в области ультразвука были продолжены. Благодаря «сверхзвуковому рефлектоскопу», разработанному в первой половине 20 века учёными Спроулом, Фаярстоуном и Спер стало возможным обнаруживать дефекты в металле, что нашло своё применение в промышленности.

Во второй половине XX века учёные – исследователи Генри Хугес, Кельвин, Боттомли и Баярд изготовили металлический дефектоскоп, а Том Броун с Яном Дональдом разработали первую в мире контактную ультразвуковую машину. Кроме этого, Яну Дональду принадлежит заслуга в исследовании клинических областей использования ультразвука.

Гидролокация

Вначале следует пояснить, что же такое гидролокатор. Гидролокатор – это прибор, который обнаруживает объекты, находящиеся под водой, при помощи эха.

Гидролокационная установка обладает приёмником, который принимает эхо на себя и информирует о предметах, находящихся под водой. Таким образом, благодаря учёным Элру Бэму (Австрия-1912г.), Левису Ричардсону (Англия – 1912 г.), Реджинальду Фессендену (США – 1914 г.

), создавшим в разное время и в разных странах эхолоты – гидролокаторы, стало возможным обнаружение айсбергов, что спасло тысячи человеческих жизней.

Гидролокационные установки нашли своё применение в военной промышленности (например, для обнаружения подводных лодок), в речной и морской (для определения возможных препятствий, затонувших кораблей), в тяжёлой промышленности (для поисков залежей нефти) и т.д.

Выдающееся открытие в 1928 году в области ультразвукового дефектоскопа принесло признание русскому учёному С. Я. Соколову.

Первые опыты применения ультразвука в области медицины

Широкое применение ультразвук нашёл в области медицины как метод диагностики — УЗИ. По словам Яна Дональда, сказанным в 70-десятые годы, «медицинский гидролокатор весьма внезапно вырос и достиг совершеннолетия; фактически, его всплеск роста в пределах последних нескольких лет был почти взрывом».

А начиналось это в далёкие пятидесятые годы 20 века.

Американцы Холмс и Хоур, используя достижения в технических областях, первыми сканировали человека, погружая его в бак, изготовленный из башни от самолёта В29, с дегазованной водой, пропуская ультразвук вокруг оси 360 градусов, что и стало первой томограммой.

Открытие Йаффе привело к тому, что Тернер из Лондона, Лекселл из Швеции и Казнер из Германии использовали ультразвук для энцифалографии срединной линии головного мозга в целях обнаружения гематом, полученных в результате травмирования.

Инге Эдлер и Карл Хеллмут Герц стали пионерами в области эхокардиографии (ультразвуковой кардиографии).

В 1955 году Яном Дональдом и доктором Барром были проведены первые исследования опухолей, твёрдой и кистозной. При поддержке Яна Дональда инженер Том Браун создал прибор Mark 4, который дифференцировал твёрдые и кистозные опухоли, чем сумел спасти человеческую жизнь.

Интерес к УЗИ и ультразвуковой технике постоянно растёт, так как он проникает во все сферы человеческой деятельности.

Источник: https://uzist.ru/istoriya-uzi/istoriya-uzi.html

Поделиться:
Нет комментариев

    Добавить комментарий

    Ваш e-mail не будет опубликован. Все поля обязательны для заполнения.